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ABSTRACT

The use of directed graphs to explicitly state the structure of solutions in
plane linear anisotropic elasticity aids research into the strength and failure of
composite materials by providing a visible structure for: recording available solu-
tions, adding on new solutions, and selecting useful solutions for the problem of
finding functions on the composite structure whose critical values are load and
geometry invariant.

Further aid is given by recent developments in tensor manipulations in com-
plex coordinates, the mechanics of which are included as an appendix.

The solution graphs (directed graphs) for the anisotropic half plane and for
the contact of dissimilar anisotropic half planes are presented.

PROBLEM STATUS

This is a final report on one phase of a continuing NRL problem under the
sponsorship of the Office of Naval Research.

AUTHORIZATION

NRL Problem F01-04
Project RRO09-03-45-5451, Task RR0090345
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NOTATIONS

SECTION II

TuP(Zn)

ESt(fl
SupEst=ZaIutau

S+

s-

UP®
TUP(Zn)

TuP Sast Es

Dt(Zn)

Vu (zn)

Q(zn)

I

¢(zfl)
Vu (zn )

yp

7p

TU(zn)

DS'(zn)

Csup

complex contravariant components of the state-of-stress tensor
contravariant complex components of the state-of-strain tensor
complex components of the material compliance tensor

the gradient operator

the region to the left of the boundary
the region to the right of the boundary
contravariant Cartesian components of the position vector

contravariant complex components of the position vector

node 2 of a directed graph whose value is TuP(zn)

directed edge of a graph which connects nodes 2 and 7
which represents a transformation S't: TP Est

UP

node with edges connected internally indicates that the value
of the node is to be taken as the sum of value obtained by
two paths

complex components of the displacement vector

double circle indicates that the value of the node is to be
taken as the zero of Vu(zn)

a zero-order tensor which provides the zero for the com-
patibility condition
the normal notation used to denote the transformation;
ip(u)Tu(zn) =Tu(wn) = Tu'(zn), where wn is a coordinate
system rotated 900 clockwise from zn
the real-valued Airy's stress function

vector used to provide the zero for the equilibrium condition

complex components of the tangent vector of the arc across
which the stress vector acts

normal vector to the arc across which the stress vector acts

contravariant complex components of the stress vector

complex components of the derivative of the displacement
vector DS(zn)

the complex components of the material stiffness tensor
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XU a characteristic vector of the polynomial differential field equation for the
theory of plane anisotropic linear elasticity

r u the rth characteristic vector

ko the kth complex-valued stress function where
4

O(zn) = kY, k (zu k /p kP)

k=1

use of the complement notation where u is an index set (1,2) and C1 is the
index set (2,1)

the complex conjugate of zu

kw complex arguments of the complex stress function, kq(kw), where kw =
zu k / k 

r the [-a,a] segment of the x1 axis

k the set (1,1)

z is Zl

h2 (z) a discontinuous holomorphic function vector

i 1/7 (always)

t a point of the arc r
t+ t approached from the region S+

t t approached from the region S

5v mixed complex components of the metric tensor and equal to the metric
tensor of the Cartesian reference frame

BQS complex-valued tensor whose value is determined in terms of products of
other tensors from the directed graph for the half plane

Xm (z) a function tensor whose components are sectionally discontinuous holo-
morphic functions and has the property that it maps a cauchy integral
operator into a space where the inverse is also a cauchy integral operator

BVI boundary value problem of the first type, where the boundary stress vector
is specified.

IB I the determinant of BQ

SECTION III

3 Tu(t) the discontinuity in the stress vector along the arc of contact r
4 Ds'(t) the discontinuity in the derivative of the displacement vector along the arc

of contact r at the point t
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APPENDIX A

a
axU

gLLV g~uV

g

Tu .wz (xn)

TU*zvUwz(Zn)

k WQ(zn)

the stress and displacement derivative vector for the body to the
left

the stress and displacement derivative vectors for the body to the
right

the resultant load vector for the body on the left and the right
where 3 Tu(t) = 0

partial derivatives wrt to contravariant Cartesian components of the
position vector, which transforms as a set of covariant components

complex components of the metric tensor

determinant of guv

Cartesian components of the general tensor, T, contravariant wrt
the indices u. v and covariant wrt to the indices w...z

complex components of the general tensor T

set of complex components which transform as a vector wrt both
k and 
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SOLUTION GRAPHS:
SIMPLE ALGEBRAIC STRUCTURES FOR PROBLEMS

IN LINEAR ANISOTROPIC ELASTICITY

I. INTRODUCTION

A literature survey of fiber-reinforced plastic composites for the years 1958 to 1970
by Beckwith et al. (1970) lists a total of 1956 publications for an average of 163 per year,
whereas a similar survey for 1971 by Beckwith et al. (1971) lists 514 publications. Though
the numbers are not given for the number of publications on the stress analysis of com-
posite structures, they are probably proportional to those given above, indicating a rapidly
growing use of the theory of plane linear anisotropic elasticity. For an effective use of the
theory two principal difficulties need to be remedied. First, the representation of the
mathematical transformations is cumbersome and at times unmanageable. Second, the
mathematical structure of a problem solution is practically imperceptible.

The proposed remedy to the first difficulty is reported on in NRL Report 7537,
titled "Tensor Manipulations in Complex Coordinates," which introduces into the tensor
calculus for complex variable coordinate systems several new integer functions and nota-
tions which simplify greatly the form of the tensor transformations encountered. The
mathematical apparatus from this report is included in Appendix A.

The proposed remedy to the second difficulty is the use of directed graphs to state
explicitly the mathematical structure of the problem solutions much in the same way as
diagrams in algebra and flow charts in computer programming are used.

As demonstrations of the effectiveness of these remedies, the solution graphs for the
half plane and for the contact of dissimilar anisotropic half planes are constructed. The
degree of effectiveness of the remedies can be judged by comparison with the work of
Green and Zerna (1968) for anisotropic half planes and with the work of Clements (1971)
for the contact of anisotropic half planes.

The construction of a solution graph for boundary-value problems in continuum
mechanics can be broken down into three steps: First, a directed graph must be con-
structed, where the nodes represent the defined quantities and the edges represent the
basic relations between these quantities (typified by the graph of Fig. 5 for elasticity).
Second, a node must be constructed whose value implies satisfaction of the differential-
constraint relationships (such as compatibility and equilibrium); then the graph can be
extended so that a simple path exists from that node to the boundary-value quantities
(such as the stress vector or derivative of the displacement vector at the boundary).
Third, since at this stage all the node edge constructions are directed toward the boundary
quantities, a node-edge sequence must be found that leads from the boundary quantities
to the node mentioned above. This is done in the present case by use of a directed graph
for the linear Hilbert-arc problem for function vectors. Once the graph is constructed, it
becomes an entity and answers all questions about how one node can be evaluated in terms
of another node of the graph.
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Fig. 1 - Dissimilar anisotropic bodies in contact along
a segment of the real axis

Fig. 2 - Solution graph for the linear
elastic half plane S in Fig. 1
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HILBERT - ARC- PROBLEM
SOLUTION SUBGRAPH

BOUNDARY- DISPLACEMENT -

VECTOR-DERIVATIVE SUBGRAPH

DIFFERENTIAL-
CONSTRAINTS SUBGRAPH

Fig. 3 - Exploded view of the solution graph shown in Fig. 2

TU (z n)

Fig. 4 - Graph of the relationship and
differential constraints for plane, linear
elasticity of anisotropic bodies
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Differential-Constraints Subgraph

The differential relationships of plane linear elasticity are represented by the graph*
of Fig. 4. The linear constitutive relationship of the state of stress TUP(zn) and the state
of strain Est(zn) is given by the sequence

TuP (Zn) Sst Est(znf)
2y 7u _ (1)

and the strain displacement relations by

Est(zn ) It Ds(zn )

(2)

which ~ ~ ~ ~ ~ ~ ~~~I is radna

Est = ItDs + IsDt

= Ds It + Dt Is (3)

The compatibility condition, given by A31 (Appendix A), is represented by the sequencet

O(Zn) I,)Iti Est(zn )

with L(zn) being a zero order tensor, which provides the zero for the compatibility con-
dition. The stress relation of Airy's stress function (zn) is given by the sequence

O(gZn ) Jul JP TuP(zn)

using the previously derived form given by A30. The equilibrium conditions are given by
the sequence

TuP (Zn) I ~ u ) (6)

Here VU(zn) is the first order tensor, which provides the zero vector for the relationship.
The last sequence of Fig. 4 is the stress vector-stress relationship given by

TUP (Zn) l Tu(zn) (7)

where the vector p is the tangent vector to the arc across which the stress vector Tu(zn)
acts and y 1 is, by A28, the normal vector to this arc.

*Node numbering will be the same throughout the text. The half arrow indicates in which direction the
transformation written on that side of the edge takes place. In addition the value of a node is to be
taken as the sum of any edges which are connected within the node symbol.

tThe double circle indicates that the value of the node is to be taken as zero.

5



P. W. MAST

VU(zn)

STRESS
FUNCTION

N (znl

STRESS STRESS VECTOR AT

DISPLACEMENT DERIVATIVE
,VECTOR AT BOUNDARY

POINT zn

Dt(zn) DS(zf)

DISPLACEMENT
AT POINT z"

Fig. 5 - Differential-constraints subgraph of the solution graph for the half plane

Figure 5 is a rearrangement of Fig. 4 into the configuration used in the graph. In
addition boundary nodes for the stress vector and the displacement derivative have been
added by letting the position vector zn approach the boundary. The node Ds'(zn) is
obtained by using the chain rule for differentiation to obtain the sequence

Ess(zn) zu s DI (n

1/(ZU Is)
Is (8)

The character of the sequences

0 IuiW I
TUP Vu

.)~~~'

(9)

POINT t

, _
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should be noted. Such sequences are called exact. In an exact sequence the image of a
node under the edge transformation connecting that node to the next node is the kernel
of the next node, where the kernel of a node is the domain of that node which transforms
to the zero element of the next node (the identity element for the node). Such sequences
have been observed to occur in many different areas of mathematical analysis. The occur-
rence of exact sequences in the formulation of elasticity is pointed out because it does
not seem to have been done so before, and use might be made of it in reorganizing the
way in which the structures of continuum mechanics might be stated more clearly. For
example, given the equilibrium condition, it is obvious from the notation what the stress-
function definition should be in order that the stress-function definition and the equilibrium
condition form an exact sequence. The property of an exact sequence that is used here is
that in the sequences given by 9 any path covering the edge (1,2) insures that the edge
(2,4) maps node 2 onto the zero element of node 4 and similarly any path covering edges
(5,7) and (6,7) insures that node 7 maps onto the zero element of node 8.

When the sequences given by 9 are connected by the edge (2,7), two paths through
the graph satisfy both the compatibility and equilibrium conditions. They are the paths
(1,2,7,8) and (5,7,2,4) plus (6,7,2,4). The first gives the stress-function formulation and
the second the displacement-vector formulation. The paths are represented by the differ-
ential equations

UPS S is t= 0 (10)

CufPDsfzn)l = 0, (11)

where CuP is the inverse of Sst and where use is made of the symmetry of CuP. A stress
function formulation is used.

The differential equation 10, becomes, after lowering indices and noting the equivalence
of the symbolization UIP = (I' U IpI *

(Sstup pi Is' it,) (Z) =0. (12)

Equation 12 is a fourth-order homogeneous polynomial in Iu,, which can always be factored
into a product of linear forms XU u (i.e. - t (/azl) + iX2(a/az2)) provided XU is a vector
in complex coordinates. When factored, 12 becomes

/4

(r1 ru )(Zn) = 0, (13)

which can be inverted by successive integration to yield

4

O(Zn ) = 3 r(zurXU) (14)

r=1

once it is noted that the integral of the differential equation

(XU lui) (zn) = 0

7
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is

O(Zn) = O(ZUXU). (16)

After taking the complex conjugate of 11 and 12, it is seen that if Au is a solution vector
of 12, then Xu is one also. Using this and the fact that O(zn) is real, equation 14 is converted
to

/(Zn) = k k(zu kX') + k k(Zu kXu), (17)

where k = 1, 2 and k6 is the set (1,1). The sequences in 9 are closed symbolically by the
sequence

13) k O(zu X)

4(zn) ® 1 (zn) (18)

Q 

24) k((zukXU)
and appears in Fig. 6.

The Continuation Coordinate System

When zu -4. tyu, zu ku - tuu kX ( yu II = 1). For the purpose of a Hilbert-arc
formulation of the problem the arguments of the stress functions k must approach the
same point t of the boundary. Toward this end define the variables kw to be

1yl k X

where the boundary arc r is parallel to yP and goes through the origin. Let the region to
the left of r be called S' and the region to the right be called S-. The positive direction
of r is that of -yP.. Since k w is the ratio of scalar products, it is invariant with respect to
rotations and dilations of the Cartesian coordinate system.

It is easy to see that if yP is parallel to the real axis, z E S', and G E S-, then kw E S'
and k w E S-. Rotating and dilating the Cartesian coordinate system obviously leaves this
relationship unchanged. Changing variables zu k/Iyp kp - kw, 17 becomes

O(Zn) = 6 k O(k W) + k k(kW). (20)

The Boundary-Stress-Vector Subgraph

The upper half of the graph of Fig. 6 which connects k(k w) to the stress vector on
the boundary is constructed in several simple steps. The sequence

8
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ko)"(kw)

ARGUMENT OF STRESS FUNCTION AS A
SCALAR PRODUCT OF THE POSITION
VECTOR Zn AND THE CHARACTERISTIC
VECTOR kX, .

kok kTn(kw)

INTEGRATION OF GOVERNING
DIFFERENTIAL EQUATIONS BY
QUADRATURES

* (zn)

STRESS VECTOR AT
/ BOUNDARY POINT t

Tn (t)

k q (kw)

k4 )l(k W)

Fig. 6 - Boundary-stress-vector subgraph of the solution graph for the half plane

)k0) "(kW)

(k w U' k IP1 )

k o(kw) k TUP (k w)

makes use of the chain rule for differentiation. Since the scalar product

k gpl z = epl
WIP ay yu kX

has the value 1, the sequence

ko)
1 (kw) kwIuI kTu(kw)

connecting k "(kw) to the stress vector has a particularly simple form.

The lower half of the graph of Fig. 6 is obtained in the same manner as the upper
half. Use is made of the fact that since luL, IP1, y 1, are transformable into Cartesian
coordinates, by A10,

(21)

(22)

(23)

9
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kTuPtkW) kEss(kw) k Ds (k w)

ZDISPLACEMENT VECTOR
DERIVATIVE AT BOUNDARY

Ds' (t) POINT t

kTUP(kw) kEss(kW) kDi'(kW)

Fig. 7 - Boundary-displacement-vector-derivative subgraph
of the solution graph for the half plane

SECOND-ORDER TENSOR WHOSE COMPONENTS
FARE PLEMELJ FUNCTIONS, DETERMINED SUCH
THAT BL-X1(t) =Bl:X (t) ALONG SEGMENT
(-aa] OF THE REAL AXIS AND SUCH THAT
XJ4(t)=X1j(t) ALONG THE REMAINDER OF
THE REAL AXIS

KM K(Z)

*_TTHE RESULTANT LOAD VECTOR ON
THE SEGMENTC-aa] OF THE REAL
AXIS T t

P-=J +Tmat)dt

Fig. 8 - Hilbert-arc-problem solution subgraph of the solution graph for the half plane
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Iui l IiIU 1 t

p'Y I "" Y-{p wpl

(24)

(25)

The Displacement-Vector-Derivative Subgraph

The displacement derivative subgraph in Fig. 7 is constructed using the commutativity
of the edge transformation to build on the subgraphs of Figs. 5 and 6.

The Hilbert-Arc-Problem Subgraph

The graph of the Hilbert-arc problem is shown in Fig. 8. The graph

hQ(oo) Tu(t) (26)

hQ(f) hk-(t)

expresses the fact that the solution to the problem of finding a function vector h(z)
analytic throughout the z plane except along a union of arcs and curves F, where it
satisfies the discontinuity 2 hQ(t) - hQ-(t) = Tu(t), is found by taking the Cauchy
integral of the discontinuity Tu(t) along the arc r. The Cauchy integral provides the
desired function vector. If poles or removable singularities are specified, the solution is
modified by the addition of an appropriate polynomial.

When the problem is one of finding an analytic function vector h-(z) that satisfies
the discontinuity condition

1+(t)

34_
DsI(t)

R (10A-

K�I
-B i

Q

hQ1 -(t)
(27)

a solution can be found by transforming the sequence 27 into one similar to 26 by use of
the function tensor XQ (z) which satisfies the discontinuity condition

ill
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BsQ Xm+(t) = Bs X2 (t), t EF (28)

and is analytic elsewhere.

The transformation is shown in Fig. 8. The function vector h2 i(z), normal to O(z),
is introduced in anticipation of simplifications that arise when the graph of Fig. 8 is con-
nected to those of Figs. 5, 6, and 7.

The Half-Plane Problem

The solution graph for the half-plane problem is formed by connecting the graphs of
Figs. 5, 6, 7, and 8, where the nodes (9,10) of contact have been chosen such that hk(z)
is analytically continued through unloaded parts of the boundary.

The connections of hO(z) and kho"(kw) given by the sequences

k (kw) k ,wQ' hQ(kw)

14 29~~~~~~~~~~~~(9
(k±W IQ)/ IWI (29)

(kw~ ~ Qkf3

are natural and correspond to the approach of Green and Zerna (1968).

For BVI problems where TU(t) is given, the value of any node can be found by
evaluating the path connecting that node to node 9.

The edges (34,10) and (37,10) can now be evaluated as

kwIU' kwIP1 kWIWI
BQs = Sss k Q (30)

UP IWIkw Is (0

_- K Ew IU1 kw IP1k I) (31)

Q\up 1WIkw WS /~

For the case of interest (where yp is parallel to x1 as in Fig. 1) Bs, when evaluated
in terms of Sst k \u becomes

B1 = 2i(11 - S11 21 IL (32)

12
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( [;~~2 1\2 

B 2 = i (S 22- [ 2 + ]) (34)
1 12 11L X2 'X 2 j/

= 2i (522 + S22 (35)

From this it can be established that

Bs. = IBIB , (36)

which was the result anticipated when the discontinuity condition was stated in terms of
h (z) instead of h2(z). The advantage to this is that BQ and BQ- can be diagonalized by
the same transformation. In the diagonalized form it becomes a simple matter to find
Plemelj functions to satisfy condition 27. Since Xn(z) will then be in diagonal form B,
BQ, and X2 (z) will all commute with each other in their diagonalized or undiagonalized
form. The solution of the problem where the displacement derivatives are given along
part of the boundary and where the remainder is unloaded is obtained by finding the
connecting path from node 10 to whatever node is desired and applying that transformation
to the given values of Ds (t). Similar analysis for the body occupying the right half plane
S- gives the graph of Fig. 2 rotated 1800 about nodes 25 and 27, with Tu(t) replaced by
-TU (t).

III. THE SOLUTION GRAPH FOR THE CONTACT OF
DISSIMILAR ANISOTROPIC HALF PLANES AND ITS USE

An important problem for analysis is the one of contact of dissimilar anisotropic half
planes over an arc [-a, a] of the real axis (Fig. 1). Such an analysis is used to model
such laboratory structures as a crack running at the interface of a plywood plate and an
aluminum attachment, a flat crack running through a carbon filament plate, a thin variable-
size failure zone propagating through a fiberglass specimen (or at an interface of an attach-
ment of dissimilar material), or even the simple case of a crack in a homogeneous isotropic
plate.

Though Muskhelishvili (1953) does not treat the case of anisotropic contact, he does
treat the case of frictionless contact of dissimilar isotropic bodies. The cases were later
extended by Erdogan (1963, 1965) to those of nonslipping contact over various segments
of the real axis. The work of Williams (1959) and of Rice and Sih (1965) is of a similar
nature but does not follow as closely that of Muskhelishvili. Clements (1971) and Willis
(1971) treat the problem of contact of two dissimilar anisotropic half planes along the
arcs [- A, -a] and [a, -l with the arc [-a, a] being loaded by equal and opposite
tractions on either half plane. The case of contact of dissimilar half planes along the arc
[-a, a] is treated here as a more useful model for a laboratory structure.

13
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Fig. 9 - Solution graph for the linear elastic problem of the contact of dis-
similar anisotropic bodies occupying the left and right half planes S', S-

SOLUTION GRAPH FOR HALF PLANE S+

HILBERT-ARC- PROBLEM SOLUTION
SUBGRAPH FOR THE CONTACT OF
THE HALF PLANES S AND S- SOLUTION GRAPH FOR HALF PLANE S5

Fig. 10 - Exploded view of the solution graph in Fig. 9

14
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4 he(z)

he' ( ) 31p(t) 4 h (t tX)+ 4 t

105 106 f9 X4 1(t) 3 gyg

3 h (a z) 00 La 10 3 Tt) he t 4k-(t) -

4 14Vz)
Fig. 11 -Hilbert-arc-problem subgraph of the solution graph

for the contact of half planes S and S-

The solution graph for the contact problem is depicted in Fig. 9 and in exploded
view in Fig. 10. The solution graph for the Hilbert-arc problem which is to be connected
to the solution graphs for the right and left half planes S- and SI is shown in Fig. 11
and is similar to that of Fig. 8 except that functions h (k w) are not needed and that the
problems for traction discontinuities 3 TU(t) and displacement derivative discontinuities
4 D f' (t) are not connected in the same graph and require the use of two separate functions,
3hQ(z) and 4hl(z).

The sequences

I U(t) bc 3Tc (t) 5c -2 Tu(t)

0 u _ G Uu (37)

lDS'(t) f 4Df'(t) f 2Ds8 (t)
s _ (38)

15
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lh.t 3~ 3e,(t) 2e 2h(t)

35 1 0 86I( 

ip(I) 4ip(f)

S Ah) 34 109 87A h (t)

(II It '81 I

I u ( 8C 3 T3-(t) _T ¢ X

1h Bt) 4 B'- )2 l l- J

contact of half planes graph

state the discontinuity conditions for Tu (t) stresses and displacement derivatives across
the arc [-a, a]. These conditions result in the desired edge connections for the half-plane
problem and the Hulbert-arc problems being both positive and negative identity transfor-
mations. These are shown in Fig. 12 for a characteristic number of edges.

When the stress vector discontinuity, STC(t) is zero, the graph of Fig. 11 shows that

3 he(z) = lhe(z) + 2he(z) = 0, (39)

from which it follows that

lhe (z) =- 2 he (z

and

4 he(z) =_lhe(z) + 2he(

- 2lhe(z) (41)
_ 82he(z).

The expression for the dislocation D (to)) where t E [- o-a] U [a, o] is found
in terms of 4Dfs(t), where t E [-a, a], from the graph of Fig. 11 as

16



NRL REPORT 7577

4D(to) e 4 e B) X9( 0 )-A rila [4 to dt . (42)
L a°]

When the dislocation 4 D f(t) is zero, 42 simplifies to

4Df'(to) = (4bt + 4Bf)Xg (t)-, (43)

where from the graph of Fig. 12

4ff = 2Bf - 1Bf (44)
e e e

4Bf= 2Bf - if (45)
e e e

IV. SUMMARY

The effectiveness of graphing and of the extended tensor calculus in complex coordi-
nates is demonstrated by constructing the solution graphs for the plane linear elasticity
problems of anisotropic half planes and the contact of dissimilar anisotropic half planes.

In the development of the graph for the half-plane problem, the governing differential
equation is interpreted as a polynomial in first-order tensors. Use of the characteristic tensors
ku X of the polynomial result in zero-order tensor arguments of the solution functions. The
edge transformations generated as derivatives of the arguments are then tensors. This is in
contrast to the universal approach of using the characteristic roots, which are not tensor
quantities.

The work that still remains is the extension of the graphing technique to handle any
two-dimensional boundary-value problem, where solutions are sought by connection to a
Hilbert-arc-problem solution graph, and the integration of this technique with symbolic
manipulation computer programs (IAM, Reduce, Formac) to automate applications of the
solution graph which might require tedious, lengthy, or complicated sequences of
transformations.
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Appendix A

TENSOR MANIPULATIONS IN COMPLEX COORDINATES

For two-dimensional tensor analysis problems there are distinct advantages to using
complex variable coordinates. One advantage is that the rotation tensors induced by
rotation of the Cartesian coordinate system are diagonal (the components of tensors in
the new coordinate system are scalar multiples, instead of a linear sum, of the old com-
ponents). Another is that the alternating tensors take on particularly simple forms which
leads to a correspondingly simplification in such things as Airy's stress function and the
compatibility equation of elasticity theory. But most important a complete tensor for-
mulation of the theory of plane linear anisotropic elasticity can be obtained in complex
coordinate whereas it is not possible to obtain one in Cartesian coordinates. This follows
from the fact that the roots of the characteristic equation have the transformation prop-
erties of a vector and for almost all cases are not transformable into Cartesian coordinates.

There is a potential disadvantage to the complex coordinate representation, in that a
distinction is present between contravariant and covariant components, which is not present
in the Cartesian case. The introduction of a new notation relieves the difficulty.

Manipulation problems are further relieved for transformations in general by intro-
ducing two integer functions.

For convenience Green and Zerna (1968) will be followed as closely as possible with
respect to notation, symbolization, and development. Wherever possible a particular
equation from Green and Zerna (1968) will be used as a starting point for the develop-
ment of relationships.

THE TRANSFORMATION TO COMPLEX COORDINATES

Let xu be the components of a vector in a Cartesian coordinate system and zu the
contravariant components of the same vector in a complex variable coordinate system
defined by the transformation*

=zl [1 i]{(xl2} 1 (Ala)

and the inverse transformation

{x}= [. l l {z }~ , (Alb)

where i is always to mean \/--.

*The use of l/F2 in Ala instead of the usual 1 is credited to R.J. Sanford of NRL and results in A3a
not being multiplied by 2 as would have been the case.
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The derivatives of the transformations are*

Ifaz r _Il ill1
laxu I L (A2a)

and

aXo n 11 

azv- S I 1 a(A2b)

The metric tensors and their determinants then follow ast

{gu 0 ], (A3a)

{fu u} =[ 0], (A3b)

det gU} = (-i)2 = -1 = 11g, (A4a)

det 19u u = (i) 2 = -1 = g. (A4b)

The metric derived from the Cartesian system by A2a is extended to those tensors
in the complex system not transformable by A2b into the Cartesian system. An apparent
disadvantage of this is that vectors of nonreal length can occur. A clear advantage is that
it provides a means of distinguishing those tensors not transformable to Cartesian
coordinates.

ASSOCIATED TENSORS AND THE
COMPLEMENT NOTATION

The associated tensors$ defined by the relationships

Tu = guvT (A5a)

when using A3a become

2Ttg|= {T '} (A5b)

The complement notation is defined as follows. If u is the set (1,2), then Ct is defined
to be the set (2,1). Using this notation, A5b can now be written as

*See Section 6.4 of Green and Zerna (1968).
tSee Section 1.9 of Green and Zerna (1968).
tSee Section 1.10 of Green and Zerna (1968).

If an index appears one or more times on only one side of an equation, then a summation over the
range of the index is implied.
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Tu (A6)

Similarly for lowering an indice the relationship is

T W- ... = Tuw ... z (A7)

TENSORS NOT TRANSFORMABLE
TO CARTESIAN COORDINATES

The associated tensors and the complement notation provide a ready means for
detecting which tensors are transformable to Cartesian coordinates (that is, finding the
conditions on the complex components of a tensor such that under the transformation
Alb the components become real). When the xu are real, the relations

= (xi - ix2) =2
(A8)

z =, (Xi + ix2) = l

where z means the complex conjugate of z, are true. Using the complement notation,
A8 becomes

-u = zU (A9)

For a general tensor Ts-k ... the statement corresponding to A9 is that

Tstk = Tst - (A10)

is true when Ts---tk Q(z') is transformable to Cartesian coordinates. This is easily shown
by the following argument. Under the transformation Alb we have that

TUV~~xfl) = axu ax, azk __ szk (f) AlTu ... v (xn) = - n. aa- aa- .z - Ts..t (zn). (All)
W ... z azs aZt axW aXZ k.. 

When the xn are real, it follows from A9 that

_ ax (A12)
azV azv-

so that the complex conjugate of All is

VW... (xn) = axu axV azk azi ?s .. t (zn).

azs azt axw JxZ k..

When the tensor components are Cartesian and hence real, the left sides of All and A13
are equal. Substituting - s, t t, k - k, Q -* Q into A13 and equating the right sides of
All and A13, we obtain A10.
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THE ALTERNATING TENSORS AND THE p FUNCTION

The Airy's stress function (zn) for zero body forces is defined in terms of the stress
tensor TUP(zn) as*

TuP = eusePt 0 st, (A14)

The alternating tensor Cr is obtained from the tensor e's of the Cartesian system by the
transformationt

ers = es = ers (A15)

Since r and s must be either 1 or 2, and r cannot be equal to s, an obvious simplification
of A15 is obtained using the complement notation, so that A15 becomes

er = err S = ierr 5s. (A16)
r r

Since err is +1 or -1 depending on whether r = 1 or r = 2, A16 can be further simplified
by introducing the integer function p(r) defined as

p(1) = + 1,

p(2) =-1. (Al7)
Using A4b and A17, A16 then becomes

ers -ip(r)s-. (A18)
r

The Airy's stress function now becomes

TUP =-p(u)p(p) I (A19)

The p function has a further use in simplifying the compatibility equation$

eSU tvEst I = 0. (A20)

In terms of the p function and complement notation, A20 becomes

-p(s)p(t)E tIs-T = 0. (A21)

Further simplifications are possible when the rotation transformation are introduced next.

*See Section 7.5 of Green and Zerna (1968).
tSee equation 1.7.14 of Green and Zerna (1968).
$See Pearson (1959), equation IV-33.
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ROTATIONS AND THE s FUNCTION

When the Cartesian coordinates are rotated through an angle , the derivative of the
transformation is given by*

|ayu ' [cosO -sinO(( x Lsin 0 cosaj (

and the corresponding derivative in complex coordinates is

awu - azU axt ays (A23)
azv a 3z axt

Using A2a, A2b, and the p function, this becomes

az = [eo e1] = eip (u) .e u (A24)

The general tensor Tu. V z(z') becomes under the transformation A24

awu azk az2

Tu z (Wn) = Tsu .....ataz az tk .(n)A5Tu~~~~~~~v = ~~~~~~~(A25)

= i(p( ... + p(.V) + p{W) +...+ P(Z))OTU ... Z(zn)

When the integer function s is- defined by

s(u ...v) = p(u) +...+ p(v), (A26)

then A25 becomes

Tu...vwz(wn) = e (uVw z)OTuvwz(zn). (A27)

Of particular interest is the case of 0 = -7r/2, which corresponds to rotating the
coordinate system clockwise through 900 or rotating the tensors counterclockwise by 900.
For this case A27 becomes, using the fact that e-iP (u)7r12 = ip(-),

TU...w Q(wn) = inp(u4...p()p(U3)...p(Q)TU w Q(zn)

(A28)
=Tul ... v Q(zn)

where the symbol i is used to indicate the transformation

Tu * * V = p(u)Tu. v. (A29)

*Covariant differentiation wrt contravariant coordinates produces covariant components, so that the
tensor ayUlaxv is controvariant wrt to u and covariant wrt to v.
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Taking up again the Airy's stress function definition
associated tensors, it can be written as

TUP = 0 Iu"pi

A19, we see that, using A29 and

(A30)

Similarly the compatibility equation A22 becomes

E IsIti = 0
St (A31)

THE INVERSE OF A TWO-BY-TWO MATRIX

It is convenient to have a simple expression for
Consider the matrix

the inverse of a two-by-two matrix.

{kW = 1 2

which has the inverse

lWQ 1
F22

w2- IW

(A32)

iW21
IW IWI 

(A33)

Using the p function and the complement notation, A33 becomes

k wQ = p(k )p(Q)kwIw I, (A34)

which upon application of notation and the use of associated tensors, becomes

k -1 I
WQ k±W /wI (A35)

The use of indices to the left and right of the tensor symbol is to indicate that k WQ trans-
forms as a vector with respect to both k and Q.
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